NEW TRIMETHYLENEDIPHOSPHINE COMPLEXES OF PALLADIUM(II)

V. D. BIANCO AND S. DORONZO

Istituto di Chimica Generale ed Inorganica, Universita di Bari, Bari, (Italy) (Received February 7th, 1971)

SUMMARY

The new complex [Pd₂(HPCH₂CH₂CH₂PH)(H₂PCH₂CH₂CH₂PH₂)₂]Cl₂ has been prepared by treatment of Na₂PdCl₄ with H₂P(CH₂)₃PH₂ in ethanol. This product has been treated with sodium perchlorate in ethanol to give the corresponding diperchlorate, which is very explosive.

INTRODUCTION

In the course of attempts to prepare new complexes of palladium with alkylenediphosphines, we have isolated an explosive binuclear diperchlorate complex with trimethylenediphosphine. We describe below the route to the ligand, and the preparation of the complex.

RESULTS AND DISCUSSION

Trimethylenediphosphine was obtained from the reaction between sodium dihydrogen phosphide and 1,3-dichloropropane in liquid ammonia and was identified by means of elementary analysis and IR spectrum; the latter exhibits a strong band at 2280 cm⁻¹, characteristic of P-H stretching vibration¹*. Treatment of the diphosphine (ca. 2 moles) with Na₂PdCl₄ in ethanol gave the yellow dichloride complex $\{Pd_2[HP(CH_2)_3PH](Pp)_2\}Cl_2$ (I) (Pp=diphosphine), according to the equation:

$$2Na_2PdCl_4 + 3H_2P(CH_2)_3PH_2 \rightarrow [Pd_2\{HP(CH_2)_3PH\}(Pp)_2]Cl_2 + 4NaCl + 2HCl$$
(I)

The ionic character of the compound was confirmed by conductivity measurements ($\Lambda_{\rm M} = 52 \, {\rm ohm}^{-1} \cdot {\rm cm}^2 \cdot {\rm mol}^{-1}$ in ethanol solution $1.03 \times 10^{-3} \, M$ at 22°).

When the ethanol solution of (I) is treated with NaClO₄, a yellow crystalline product {Pd₂[HP(CH₂)₃PH](Pp)₂} (ClO₄)₂ (II) precipitates, and its IR spectrum exhibits bands at 1110 and 920 cm⁻¹ characteristic of ionic perchlorates⁴. When well dried the perchlorate explodes violently on percussion or rubbing. Owing to its explosive character, this complex has not yet been fully characterized.

^{*} The diphosphine preparation has been previously mentioned only in patents², which do not give much detail. Leffler and Teach mentioned its preparation in an abstract³, but gave no details.

Although we do not yet have direct evidence, the following structure can be postulated for the new compounds on the basis of the well known tendency of palladium to form binuclear complexes containing the phosphorous-bridged structure $Pd_2P_2^{-5}$:

EXPERIMENTAL

The apparatus utilized in the preparation of the diphosphine is shown in Fig. 1. All the operations were carried out under dry nitrogen with rigorous exclusion of air and moisture.

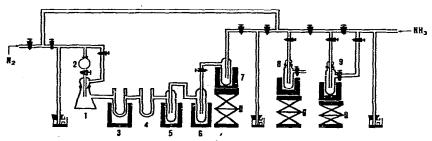


Fig. 1. 1 AIP; 2 H₂SO₄ (1/10); 3 Ice bath; 4 KOH; 5 and 6 Acetone/CO₂ trap; 7 Liquid nitrogen; 8 Reaction vessel; 9 NH₃ condensation and anhydrification.

The complexes were prepared and manipulated under nitrogen by standard vacuum-line techniques. Infrared spectra were measured on a Perkin-Elmer 337 spectrometer.

Trimethylenediphosphine $H_2P(CH_2)_3PH_2$

A stream of PH₃ (obtained from 19.8 g of 58.6% AlP (0.2 moles) and dilute (1/10) H₂SO₄) was bubbled at -35° slowly with stirring into the blue solution of NaNH₂ obtained from 4.6 g of sodium metal (0.2 moles) and 150 ml of liquid ammonia until the blue colour disappeared and the solution became yellow. Then 8.9 g (0.1 moles) of 1,3-dichloropropane were added slowly under vigorous stirring ,with disappearance of the colour. The ammonia was allowed to evaporate off completely, and the residue was directly distilled under reduced pressure to give 8 g of a fraction boiling at $50-55^{\circ}/25$ mm. The crude liquid was fractionated to give 6 g (60%) of pure diphosphine (b.p. $46-48^{\circ}/24$ mm) (lit. $129-131^{\circ}/725$ mm). (Found: P, 57.9. C₃H₁₀P₂ calcd.: P, 57.5%.)

μ -Trunethylenediphosphide-bis(trimethylenediphosphine)dipalladium dichloride (I)

Trimethylenediphosphine (1.1 g; 10.2 mmoles) in ethanol (5 ml) was added to a water/ethanol solution (30 ml) of sodium tetrachloropalladate(II) (1.70 g; 5.8 mmoles).

J. Organometal. Chem., 30 (1971) 431-433

to give a yellow precipitate which redissolved on shaking. The solution was evaporated to dryness in vacuo, and the residue treated with the minimum amount of absolute ethanol. The sodium chloride was filtered off and the filtrate concentrated to a small volume to give a yellow crystalline product (m.p. $> 360^{\circ}$). (Found: Cl, 11.70; P, 29.90; Pd, 34.6. $C_9H_{28}Cl_2P_2Pd_2$ calcd.: Cl, 11.70; P, 30.06; Pd, 35.0%.)

The perchlorate complex (II)

Complex (II) was prepared by dissolving (I) (0.5 g) in absolute ethanol (15 ml) and adding dropwise a saturated ethanolic solution of sodium perchlorate. The yellow crystalline precipitate was collected, washed and then stored under ethanol. (Found: P, 24.8; Pd, 28.5. $C_9H_{28}Cl_2O_8P_6Pd_2$ calcd.: P, 25.3; Pd, 29.0%.) Owing to the highly explosive character of the product, its melting point and chlorine content could not be determined.

REFERENCES

- H. C. BEACHELL AND B. KATLAFSKY, J. Chem. Phys., 27 (1957) 182; L. J. BELLAMY, The Infra-Red Spectra
 of Complex Molecules, Wiley, New York, 2nd ed., 1958, p. 179; H. Schindlbauer and E. Steininger,
 Monatsh. Chem., 92 (1961) 868.
- 2 R. I. WAGNER, U. S. Pat. 3,086,053 (1963); Chem. Abstr., 59 (1963) 10124 d; U.S. Pat., 3,086,056 (1963) Chem. Abstr., 60 (1964) 559 f.
- 3 A. J. LEFFLER AND E. G. TEACH, Abstr. of Papers, 133rd Amer. Chem. Soc. Meet., San Francisco, April 1958, p. 29 N.
- 4 H. N. RAMASWAMY, H. R. JONASSEN AND A. M. AGUIAR, Inorg. Chim. Acta, 1 (1967) 141.
- 5 R. G. HAYTER, J. Amer. Chem. Soc., 84 (1962) 3046; R. G. HAYTER AND F. S. HUMIEC, Inorg. Chem., 2 (1963) 306.

J. Organometal. Chem., 30 (1971) 431-433

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 30 (1971)

AUTHOR INDEX

AHLGREN, G., 303	BIEDERMANN, JM., 167	CITRON, J. D., 21
ÅKERMARK, B., 303	BIGORGNE, M., 227, 235	CLARK, H. C., C89
ANDREETTA, A., 387	Bolesławski, M., 199	COHEN, S. C., C15
Andrews, S. B., 151	BONNAIRE, R., 411	CONNOLLY, J. W., 315
	Воѕсні, Т., 283	CONNOR, J. A., C75
BADDLEY, W. H., 67	Braterman, P. S., C17	CONTI, F., 421
BALCH, A. L., C31	Breitinger, D., C49	COTTON, F. A., 377
BARINOV, I. V., C28	BRUCE, M. I., C78	Couret, C., C70
Barrau, J., 27, C67	Виѕетто, L., 273	CUNDY, S. C., 135
BECK, W., 89		CROCIANI, B., 283
BENTHAM, J. E., C54	Calderon, J. L., 377	
BERNAL, I., 75	CARDACI, G., 221	DATTA, D., 43
BIANCO, V. D., 431	CASSAR, L., 123	Davis, B. R., 75
BICKELHAUPT, F., C51	CETINI, G., 381	DEHNICKE, K., C1